렐루

· 인공지능
렐루 함수 은닉층에 시그모이드 함수를 활성화 함수로 사용했다. 출력층은 이진 분류일 경우에는 시그모이드 함수를 사용하고, 다중 분류일 경우에는 소프트맥스 함수를 사용했다. 렐루 함수는 주로 합성곱층에 적용되는 활성화 함수로, 합성곱 신경망의 성능을 더 높여준다. 렐루 함수는 0보다 큰 값은 그대로 통과시키고 0보다 작은 값은 0으로 만든다. 렐루 함수 구현 넘파이의 maximum() 함수를 사용하면 간단하게 구현할 수 있다. import numpy as np def relu(x): return np.maximum(x, 0) x = np.array([-1, 2, -3, 4, -5]) relu(x) 텐서플로가 제공하는 렐루 함수는 relu()이다. 출력은 Tensor 객채이므로 numpy로 변환해야 한다. ..