규제 적용 로지스틱 회귀에 규제를 적용해보자. 앞에서 만들어 놓은 SingleLayer 클래스에 L1 규제와 L2 규제를 적용하자. def __init__(self): self.w = None self.b = None self.losses = [] self.val_losses = [] self.w_history =[] self.lr = learning_rate self.l1 = l1 self.l2 = l2 l1, l2 변수를 만들었다. def fit(self, x, y, epochs=100, x_val=None, y_val=None): self.w = np.ones(x.shape[1])#가중치 초기화 self.b = 0#절편 초기화 self.w_history.append(self.w.copy())#가중치..
과대적합
규제 과대 적합을 해결하는 대표적인 방법 중 하나가 가중치 규제(regularization)이다. 가중치 규제란 말 그대로 가중치의 값이 커지지 않도록 제한하는 기법이다. 가중치를 규제하면 모델의 일반화 성능이 올라간다. 두 그래프 모두 점들을 잘 표현하고 있다. 그러면 둘 중 어떤 그래프의 성능이 더 좋을까?? 이 경우에서는 기울기가 완만한 그래프가 성능이 좋다. 박스 표시된 점까지 잘 표현하였기 때문이다. 몇 개의 데이터에 집착하면 새로운 데이터에 적응하지 못하므로 성능이 좋지 않다. 이럴 때 규제를 사용한다. 대표적인 규제 L1 규제와 L2 규제를 알아보자. L1 규제 손실 함수에 가중치의 절댓값인 L1 노름(norm)을 추가한다. w는 벡터를 의미한다. 로지스틱 손실 함수에 L1 규제를 적용해보자..
학습 곡선 훈련 세트와 검증 세트의 정확도를 그래프로 표현한 것이다. 과대적합 과대적합이란 모델이 훈련 세트에서는 좋은 성능을 내지만 검증 세트에서는 낮은 성능을 내는 경우를 말한다. 첫 번째 그래프가 이에 해당한다. 이러한 모델을 '분산이 크다'라고도 말한다. 과대적합의 주요 원인 중 하나는 훈련 세트에 충분히 다양한 패턴의 샘플이 포함되지 않은 경우이다. 이런 경우네는 더 많은 훈련 샘플을 모아 검증 세트의 성능을 향상할 수 있다. 하지만, 불가능할 경우 모델이 훈련 세트에 집착하지 않도록 가중치를 제한하는 것이다. 이를 모델의 복잡도를 낮춘다고 표현한다. 과소적합 과소적합이란 모델이 훈련 세트와 검증 세트에서 측정한 성능이 가까워지지만 성능 자체가 낮은 경우를 말한다. 두 번째 그래프가 이에 해당한..